RADAR: Runtime Asymmetric Data-Access Driven Scientific Data Replication

نویسندگان

  • John Jenkins
  • Xiaocheng Zou
  • Houjun Tang
  • Dries Kimpe
  • Robert B. Ross
  • Nagiza F. Samatova
چکیده

Efficient I/O on large-scale spatiotemporal scientific data requires scrutiny of both the logical layout of the data (e.g., row-major vs. column-major) and the physical layout (e.g., distribution on parallel filesystems). For increasingly complex datasets, hand optimization is a difficult matter prone to error and not scalable to the increasing heterogeneity of analysis workloads. Given these factors, we present a partial data replication system called RADAR. We capture datatypeand collective-aware I/O access patterns (indicating logical access) via MPI-IO tracing and use a combination of coarse-grained and fine-grained performance modeling to evaluate and select optimized physical data distributions for the task at hand. Unlike conventional methods, we store all replica data and metadata, along with the original untouched data, under a single file container using the object abstraction in parallel filesystems. Our system results in manyfold improvements in some commonly used subvolume decomposition access patterns. Moreover, the modeling approach can determine whether such optimizations should be undertaken in the first place.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E2DR: Energy Efficient Data Replication in Data Grid

Abstract— Data grids are an important branch of gird computing which provide mechanisms for the management of large volumes of distributed data. Energy efficiency has recently emerged as a hot topic in large distributed systems. The development of computing systems is traditionally focused on performance improvements driven by the demand of client's applications in scientific and business domai...

متن کامل

Parallel Data Layout Optimization of Scientific Data through Access-driven Replication

Efficient I/O on large-scale spatio-temporal scientific data requires scrutiny of both the logical layout of the data (e.g., row-major vs. column-major) and the physical layout (e.g., distribution on parallel filesystems). For increasingly complex datasets, hand optimization is a difficult matter prone to error and not scalable to the increasing heterogeneity of analysis workloads. Given these ...

متن کامل

Simulation of Dynamic Data Replication Strategies in Data Grids

Data Grids provide geographically distributed resources for large-scale data-intensive applications that generate large data sets. However, ensuring efficient access to such huge and widely distributed data is hindered by the high latencies of the Internet. We address these challenges by employing intelligent replication and caching of objects at strategic locations. In our approach, replicatio...

متن کامل

Dynamic Replication based on Firefly Algorithm in Data Grid

In data grid, using reservation is accepted to provide scheduling and service quality. Users need to have an access to the stored data in geographical environment, which can be solved by using replication, and an action taken to reach certainty. As a result, users are directed toward the nearest version to access information. The most important point is to know in which sites and distributed sy...

متن کامل

Replication in Data Grid

Data Grid environment is a geographically distributed that deal with date-intensive application in scientific and enterprise computing. In data-intensive applications data transfer is a primary cause of job execution delay. Data access time depends on bandwidth, especially when hierarchy of bandwidth appears in network. Effective job scheduling can reduce data transfer time by considering hiera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014